$18 / 10 / 23$
MATH 2050 A Tutrial
Remindes:

- HW_{3} dre $23 / 10$ on Gradescope.
- Midterm 2 on 15/11
- Retum graded midtems by (aim for) next week.

Q2: a)let $A, B \subseteq \mathbb{R}$ be non-empty bounded and $A \subseteq B$. Show thest $\sup A \subseteq \sup B$.
Pf. Since A, B are non-empty and bounded by the completenerss asaom, supA, supB exist.
Common Mistales: 1) assumed $\sup A \in A$. Consider $A=(0,1)$. Thea $\sup A=1 \notin A$.
2) $\operatorname{sep} A \subset B \cdot(A \subseteq B)$ let $A=(0,1) \cdot B=(-1,1)$ then $A \subseteq B$, lout $\sup A=1 \notin B$.
We firt shon theit $\sup B$ is an u, b. of A, let $a \in A$. Then snice $A \subseteq B$, $a \in B$. And rrice sup B is an $u \cdot b$ of B, we heve $a \leq \sup B$.

So sup B is an $u \cdot b$. of A.
Since $\sup A$ is the least upper bound of A, for any other u.b, v of A, we here $\sup A \leqslant V$.
So take v to be $\sup B$ above, then $\sup A \leq \sup B$.,
Sis $\sup A>\sup B \quad$ Then $\varepsilon=\sup A-\sup B>0, \cdots$
this approach will eventually worn, bot is also more complicated
b) Let $A \in \mathbb{R}$ be bounded, nonempty, and $a \geq 0$ for all $a \in A$.
let $S=\left\{a^{2}: a \in A\right\}$. Then show sup $S=(\sup A)^{2}$. Does the conclusion still hold if the von-negativity assumption on A is dropped?
Basically, UTs $\sup \left(A^{2}\right)=(\sup A)^{2}$.
If: Since A is non-empty loouided, sup A exists.
S is also non-empty loouided \Rightarrow supS alto exists.

Common mistake: 1) $A \subseteq S$, then use part (a).
consider $A=\{2,5\}$. Then $S=\{4,25\}$, ail $A \notin S$.
To show $\sup S=(\sup A)^{2}$, well show $\sup S \leqslant(\sup A)^{2}$ ane $(\sup A)^{2} \leqslant \sup S$.
let's fist show sup $S \leqslant(\sup A)^{2}$. Well show $(\sup A)^{2}$ is an U.b. of S.
let $s \in S$. Then $s=a^{2}$ for some $a \in A$. Suice $a \leq \sup A$ for all $a \in A$,

$$
s=a \cdot a \leqslant a \sup A \leqslant(\sup A)^{2}
$$

so (sup) ${ }^{2}$ is an u io of S. So ne have $\sup S \leqslant(\sup A)^{2}$.
Now we have to show $(\sup A)^{2} \leq \sup S$. Suppose for the sale of contradiction that $(\sup A)^{2}>\sup S_{0}$ Then $\varepsilon=\frac{(\sup A)^{2}-\sup S}{2 \sup A}>0$.
Then $\exists a_{\varepsilon} \in A \quad s \cdot \sup A-\varepsilon<a_{\varepsilon}$.

$$
\begin{aligned}
\Rightarrow a_{\varepsilon}^{2}>(\sup A-\varepsilon)^{2} & =(\sup A)^{2}-2 \sup A \varepsilon+\varepsilon^{2}>(\sup A)^{2}-2 \sup A \varepsilon \\
& =(\sup A)^{2}-2 \sup A\left(\frac{(\sup A)^{2}-\sup S}{2 \sup A}\right)
\end{aligned}
$$

$$
=(\operatorname{sep} A)^{2}-(\operatorname{sen} A)^{2}+\sup 5
$$

$\Rightarrow a_{\varepsilon}^{2}>\sup s$, which means $\exists s=a_{\varepsilon}^{2} \in S$ st. $s>\sup S$, a contradiction,
So $(\sup A)^{2}, \sup ^{S}$ is ut t possible $\Rightarrow(\sup A)^{2}=\operatorname{sep} S$.

$$
\Rightarrow \sup S=(\sup A)^{2}
$$

If the non-vegatimity assumption is dropped, the conclusion fails, For example, let $A=\{-2,-1\}$ Then $\sup A=-1,(\sup A\}^{2}=(-1)^{2}=1$.
but $S=\{1,4\}$ anil sup $S=4 \neq 1$

Q4 b) Suppose $\lim _{n \rightarrow \infty} x_{n}=x$. Then show $\lim _{n \rightarrow \infty} \frac{x_{1}+x_{2}+\cdots x_{n}}{n}=x$.
Pf: let $\varepsilon>0$ be given. Then we wat to sh o $\exists N_{\varepsilon} \in N$ "Cesar Suns"?

$$
\forall n \geqslant N_{\varepsilon}, \quad\left|\frac{x_{1}+\cdots+x_{n}}{n}-x\right|<\varepsilon .
$$

Common mistulue:

1) Assumed $\left\{x_{n}\right\}$ was monotone and try to
let's look at $\left|\frac{x_{1}+\cdots+x_{n}}{n}-x\right|=\left|\frac{x_{1}+\cdots+x_{n}-n x}{n}\right| \begin{aligned} & \text { Consider } \\ & \left(x_{n}\right)=\frac{(-1)^{n}}{n}\end{aligned}$

$$
=\left|\frac{x_{1}-x+x_{2}-x+\cdots+x_{n}-x}{n}\right|
$$

Since $\lim _{n \rightarrow \infty} x_{n}=x, \exists m \in N$ s.t. $\forall k \geqslant m,\left|x_{k}-x\right|<\frac{\varepsilon}{2}$, (1)

So $\quad\left|\frac{x_{1}-x+x_{2}-x+\cdots+x_{n}-x}{n}\right|=\left|\frac{x_{1}-x+\cdots+x_{m-1}-x+x_{m}-x+\cdots+x_{n}-x}{n}\right|$

$$
\begin{aligned}
& \leqslant \frac{1}{n} \sum_{k=1}^{m-1}\left|x_{k}-x\right|+\underbrace{\frac{1}{n} \sum_{n=m}^{n}\left|x_{k}-x\right|} \\
& \\
& \text { by }(1), \frac{1}{n} \sum_{k=m}^{n}\left|x_{k}-x\right|
\end{aligned} \leqslant \frac{1}{4} \sum_{n=m}^{n} \frac{\varepsilon}{2}=\frac{(n-m)}{n} \frac{\Sigma}{2}
$$

Slice $\left\{x_{n}\right\}$ converges, $\left\{x_{n}\right\}$ is bounded
$\Rightarrow\left\{x_{n}-x\right\}$ is bonded. So $\exists M \in \mathbb{R}$, s.t. $\left|x_{n}-x\right| \leqslant M$ for all n.

$$
\frac{1}{n} \sum_{k=1}^{m-1}\left|x_{k}-x\right| \leqslant \frac{1}{n} \sum_{k=1}^{m-1} M_{1}=\frac{(m-1) M}{n}
$$

So ve talie $N_{\varepsilon}=\max \left\{\frac{(m-1) M}{\varepsilon / 2}, m\right\}$,
then $\begin{aligned} & \left|\frac{x_{1}+\cdots+x_{n}}{n}-x\right| \leqslant \underbrace{\frac{1}{n} \sum_{w=1}^{m-1}\left|x_{n}-x\right|}_{\leqslant \frac{\varepsilon}{2}}+\underbrace{\frac{1}{n}}_{\varepsilon / 2} \underbrace{n}_{n=m}\left|x_{n}-x\right| \\ & \leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .\end{aligned}$

